فیزیک صدا و سیستم Signal & System

نویز و هام در سیستمهای صوتی (بخش سوم)

جمعه 3 نوامبر 2006
/ / /
Comments Closed

در سیستم های الکترونیکی مساله ولتاژ رفرنس (Ground) نقشی اساسی داشته و سطح ولتاژ رفرنس نباید در اثر عوامل خارجی تغییر کند چرا که با تغییر سطح ولتاژ Ground انتقال صحیح سیگنال با مشکل مواجه میشود. طراحی باید بشکلی باشد که ولتاژ رفرنس در مراحل انتقال ثابت مانده و نویز بر روی آن تاثیر نگذارد. به مجموعه روشها و تکنیکهای طراحی این بخش در الکترونیک Grounding & Shielding میگویند. برای روشن تر شدن بحث ابتدا قسمتهای مربوط به گراند در یک سیستم را باید مشخص کنیم.

1. سیستم گراند مدارات پردازش و انتقال سیگنال (دیجیتال و آنالوگ) Signal Ground

2. گراند منبع تغذیه Power Supply Ground

3. ولتاژ بدنه کامپوننت Chassis Ground

4. شماتیک گراند در مدارات ورودی خروجی I/O Buffer Ground

5. گراند صفر ولت زمین Earth Ground

سازندگان برای طراحی Ground یک سیستم از روشهای مختلفی استفاده میکنند. ولتاژ رفرنس در مدارات انتقال سیستم Signal Ground نام دارد و بصورت زیر نمایش داده میشود :

sg.jpg

سطح ولتاژ سیگنال همواره نسبت به این سطح سنجیده میشود. در بخش بعدی Chassis Ground قرار دارد که ولتاژ بدنه دستگاه میباشد و در بسیاری از طراحی ها از آن بعنوان سطح رفرنس استفاده میشود چرا که همانند یک هادی بزرگ میباشد. شکل شماتیک آن بصورت زیر میباشد :

cg.jpg

سطح ولتاژ رفرنس مدارات ورودی و خروجی (Pin 1 در XLR) نیز پارامتری محسوب شده و میتواند به یکی از سطوح گراند وصل شود. چگونگی اتصال Power Supply به گراند هم پارامتری مهم در طراحی بحساب میاید. همانطور که میدانید در بعضی از خانه ها و موسسات چاه زمین وجود داشته که سطح صفر ولت زمین را از طریق کابلی به داخل خانه منتقل میکند. خط صفر ولت زمین Earth Ground نام داشته و بشکل زیر نمایش داده میشود :

eg.jpg

هدف از Grounding & Shielding در یک سیستم به حداقل رساندن نویز و هام و از بین بردن Ground Loop میباشد. هنگامی که ما تعدادی کامپوننت را که هریک طراحی گراند خاص خود را دارد با هم جمع میکنیم ممکن است مشکلاتی نظیر Ground Loop ایجاد شود بنابراین لازم است علاوه بر شناخت دقیق شماتیک گراند هر کامپوننت نحوه صحیح اتصال آنها به هم و به برق را بدانیم تا دچار مشکل نشویم. اکثر کاربران این مشکل را تجربه میکنند اما دلیل آنرا نمیدانند و این مسایل به عدم اطلاع رسانی درست شرکتهای سازنده بر میگردد. بسیاری از شرکتهای سازنده توجهی به استاندارد ها نداشته و تنها در فکر فروش محصول خود میباشند. سیستمهای بالانس در حالت کلی طراحی بهتری داشته و نسبت به نویز حساسیت کمتری دارند اما حتی یک سیستم غیر بالانس با طراحی خوب مانند Meridian از یک سیستم به ظاهر بالانس با گراندینگ بد عملکرد بهتری خواهد داشت. شکل زیر نمایی کلی از یک سیستم الکترونیکی را نشان میدهد :

nex.jpg

شکل بالا نمایی کلی بوده و هر سیستمی را تقریبا میتوان با آن مدل نمود. سیستمهایی که Power Supply آنها به گراند زمین وصل نمیشود Isolated نامیده شده و کابل برق آنها 2 تا Pin دارد. این دستگاهها در بیشتر موارد برای ولتاژ رفرنس از بدنه دستگاه استفاده میکنند و از گراند زمین مجزا هستند. به این معنی که Signal Ground به Chassis Ground متصل بوده و مدارات هم در بیشتر موارد بشکل غیر بالانس طراحی میشوند (با ورودی خروجی RCA). بیشتر کامپوننت های ارزان قیمت به این شکل طراحی میشوند. با فرض وجود Pin 3 یعنی اتصال Power Supply به Earth Ground سیستمها بسته به نوع اتصال یا عدم اتصال الکتریکی چهار قسمت Signal Ground ، Chassis Ground ، Earth Ground و Pin 1 در مدار I/O طراحی های مختلفی خواهند داشت. طراحی گراند در مدارات داخلی هم شکلهای مختلفی دارد که هریک به شکلی در کاهش نویز موثر است ، روشهایی مانند جدا کردن گراند مدار دیجیتال از بخش مدار آنالوگ و تکنیکهایی همچون Star Grounding . در بیشتر طراحی ها Chassis Ground به Earth Ground وصل میشود چرا که زمین یک هادی بزرگ با ولتاژ پایدار نزدیک به صفر میباشد. در صورت کم بودن نویز گراند زمین بهتر است همه گراندها در یک نقطه بشکل ستاره به هم وصل شوند تا بدون بوجود آمدن Ground Loop به یک سطح پایدار برسیم. طبق استاندارد Audio Engineering Society بهترین روش Star Grounding بوده و اتصال یکی از کامپوننت ها به گراند زمین بشکل زیر :

new.jpg

همانطور که در شکل میبینید Signal Ground هر دستگاه در یک نقطه به Chassis Ground همان دستگاه وصل شده و Chassis Ground دستگاهها از طریق شیلد کابلهای Interconnect (همان Pin1 ) به یکدیگر وصل شده و در مجموع یک سطح بسته هادی را ایجاد کرده اند و در انتها بدنه کل دستگاهها از طریق یک کابل به Earth Ground وصل میشود. شرکت GoldMund که یکی از حرفه ای ترین سازندگان سیستمهای صوتی در سوئیس میباشد این استاندارد را پیشنهاد میکند. متاسفانه شرکتها بشکلی درست و استاندارد عمل نکرده و هرکدام روش خود را در طرح گراند دستگاه دارد و این عدم هماهنگی موجب بروز مشکلاتی میشود. اتصال یک کامپوننت بالانس به یک کامپوننت غیر بالانس هم میتواند مشکلاتی ایجاد کند و این مسائل باعث میشود فروشندگان به خریدار پیشنهاد کنند کل قسمتهای یک سیستم را از یک مارک تجاری انتخاب کنند اما به اعتقاد من این راه حل هم همیشه جوابگو و بهینه نیست. برای رسیدن به بهترین نتیجه لازمست ابتدا نقشه شماتیک گراند هر دستگاه را از شرکت سازنده بخواهیم و بعد برای اتصال بهینه آنها تصمیم بگیریم. پیشنهاد میشود برای این مساله با یک مهندس برق الکترونیک مشورت کنید. اکثر استودیوهای پیشرفته دنیا قبل از راه اندازی ابتدا به مسائل Grounding & Shielding میپردازند تا سیستمها بدون حساسیت به نویز کار کنند. در این بخش تا حد امکان سعی شده تا راه حلهایی کلی جهت رفع مشکل ارائه شود هر چند در نظر گرفتن تمامی حالات برای تشخیص مشکل کار ساده ای نیست و بهتر است با یک مهندس الکترونیک مشورت کنید. استفاده از Isolation Transformer و یا شکلهای مختلف اتصال کابلها Wiring راه حلهای رفع مشکلات میباشند که هر کدام مزایا و معایب خود را دارند. ترانسفورمرهای جداکننده در صورت ساخت و طراحی نامناسب باعث افت کیفیت سیگنال شده و جداسازی شیلد از یک سمت هم ممکن است به ایجاد نویز RF کمک کند بخصوص در سیستمهای دیجیتال که نویز زیاد میباشد. با فرض بالانس یا غیر بالانس بودن مدار I/O و نوع اتصال شیلد کابل به بدنه و یا گراند سیگنال شانزده حالت مختلف را بررسی میکنیم :

wiring1.jpg

wiring2.jpg

wiring3.jpg

در این شکلها نحوه اتصال Signal Ground مشخص نشده است و فرض میشود در یک نقطه SG به بدنه وصل شود. هدف از بین بردن لوپ گراند و کاهش حساسیت به نویز میباشد. منظور از Ground Loop اینست که گراند یک سیستم در دو نقطه به یک گراند دیگر مانند زمین وصل شود و یک حلقه ایجاد گردد. ایجاد حلقه هادی در مسیر گراند باعث میشود نویز به سطح گراند القا شود چرا که طبق قانون ماکسول میدان متغییر مغناطیسی در یک حلقه بسته جریان ایجاد میکند. ایجاد جریان در حلقه موجب ایجاد نویز میگردد و مدار حساسیت بیشتری به نویز پیدا میکند. اگر Signal Ground هم در مسیر حلقه Ground Loop قرار بگیرد وضعیت بدتر شده و سیگنال در حال انتقال حساسیت بیشتری به نویز پیدا میکند. در ستون اول شکل بالا (اشکال a و b و c و d) هر دو سیستم بافر ورودی و خروجی بالانس داشته و در حالت a که دو سر شیلد به بدنه دو کامپوننت وصل هست بهترین وضعیت را داریم چرا که شیلد کابل به سطح گراند سیگنال وصل نمیشود. بهتر است زمانی که یکی از دو سر به Signal Ground وصل هست آن سمت کابل را قطع کنیم (شکل b و c) یعنی Pin1 کابل که به شیلد کابل وصل هست در آن قسمت به Signal Ground وصل نگردد. در اینحالت جریان حاصل از نویز بر روی شیلد به Signal Ground منتقل نمیگردد. در حالت d که هر دو کامپوننت Pin1 را به Signal Ground وصل میکنند (اکثر سیستمهای موجود در بازار اینگونه طراحی میشوند) بهتر است تنها یک سر شیلد را از Pin1 جدا کنیم نه هر دو سر را. در ستون بعدی (اشکال e و f و g و h) مدار خروجی غیر بالانس بوده و مدار ورودی بالانس میباشد. Pin1 در شکل e وضعیت بهتری نسبت به بقیه داشته و در شکل f و g بهتر است Pin1 در سمتی که به Signal Ground وصل است قطع شود. در مورد h هم مانند شکل d عمل میکنیم. در ستون پایینی (اشکال i و j و k و l) که یک مدار خروجی بالانس یک مدار ورودی غیر بالانس را درایو میکند حساسیت به نویز بیشتر میشود و توصیه میشود کابل اتصال دهنده دو مدار حداقل طول ممکن را داشته باشد. در هر چهار شکل بهتر است تنها آن سر شیلد را که به مدار ورودی غیر بالانس متصل میباشد قطع نماییم. در ستون آخر (اشکال m و n و o و p) هر دو بافر غیربالانس میباشند که باز هم توصیه میشود طول کابل را کوتاه انتخاب نمایید.

حساس بودن سیستم به نویز در ابتدای اتصال کامپوننت ها خیلی تاثیر گذار نبوده اما با گذشت زمان احساس میکنید صدا از حالت تمیز خارج شده و صحت صدا کاهش می یابد. اگر مشخصه نویز یک سیگنال مزاحم خارجی باشد که تابعی از خود سیگنال صوتی نباشد تنها شفافیت و جزئیات صدا کاهش می یابد و حالت صدا به اصطلاح Cheap تر میشود هرچند این حالت گوش را زیاد آزار نمیدهد. اما اگر سیگنال نویز تابعی از سیگنال صوتی باشد وضعیت بدتر میشود چرا که سیگنال مدوله شده و ریتم و Timing صدا خراب میشود. بخصوص در فرکانسهای بالا صدا حالت آرام و طبیعی را از دست داده و گوش را آزار میدهد. متاسفانه بسیاری از کاربران با این مسائل آشنا نبوده و بعد از مدتی بعلت خستگی ذهن (حاصل از نویز) فکر میکنند سیستم آنها مشکل داشته و باید سیستم را ارتقا دهند.

منابع :

Rane WebsiteWikipediaAnalog Devices

Read More

نویز و هام در سیستمهای صوتی (بخش دوم)

یکشنبه 29 اکتبر 2006
/ / /

از آنجایی که کابلها هم بخشی از سیستم انتقال سیگنال هستند آنها هم در دو حالت بالانس و غیر بالانس طراحی میشوند. کابلهای غیر بالانس RCA نام دارند بشکل زیر :

001.jpg

کابل RCA یک هسته دارد که سطح ولتاژ x بر روی آن وجود دارد و یک شیلد صفر ولت که بشکل استوانه هسته را احاطه کرده و از نویز محافظت میکند. حفاظت تنها به میدان الکتریکی محدود بوده و این شیلد نمیتواند سیگنال را از میدان مغناطیسی مزاحم حفاظت نماید.

کابلهای بالانس یا XLR دارای سه Pin بوده و Pin 1 آنها همان خط ولتاژ رفرنس را انتقال میدهد (Ground) و Pin 2 برای انتقال سیگنال x و Pin 3 برای انتقال سیگنال x- طراحی شده است. شکل کابل بالانس بصورت زیر میباشد :

n91.jpg

دو خط 2 و 3 که سیگنالهای x و x- را همراه دارند به هم تابیده میشوند تا نسبت به میدانهای مغناطیسی مزاحم حساس نباشند و خط اول بصورت شیلدی استوانه ای دو خط 2 و 3 را برای حفاظت از نویز در بر میگیرد. شکل زیر شمایی از یک کابل بالانس را نشان میدهد :

np6.jpg

Read More

نویز و هام در سیستمهای صوتی (بخش یک)

یکشنبه 29 اکتبر 2006
/ / /

برای تشریح مفاهیم مربوط به نویز و هام در سیستم صوتی ابتدا لازم است مفاهیم اولیه انتقال سیگنال تشریح شود. یک سیستم صوتی غیر از بخشهای بلندگو و بخش مکانیکی Transport را میتوان یک سیستم الکترونیک دانست و از خروجی Transport که سیگنال دیجیتال را به ما تحویل میدهد تا خروجی کابل بلندگو یک سیگنال الکتریکی در حال انتقال هست. وظیفه بخش الکترونیک سیستم صوتی انتقال سیگنال صوتی بشکل سیگنال الکتریکی میباشد. همانطور که میدانید سیگنال صوتی در فضا بصورت موج در حال انتشار میباشد و صدا بردار با قرار دادن یک میکروفن در این فضا سیگنال صوتی X را به یک ولتاژ الکتریکی با تابع x تبدیل میکند. در فرایند انتقال سیگنال x تغییر خواهد کرد اما برای سادگی فرض میکنیم سیستم تاثیری بر سیگنال نداشته و همواره x بدون تغییر میماند. منظور از ولتاژ الکتریکی همان اختلاف پتانسیل بین دو سر سیم میکروفن میباشد.

n01.jpg

x(t)=Vb-Va

سیگنال صوتی پس از تبدیل و طی مراحلی بر روی دیسک ضبط میشود و دستگاه دیسک خوان (مانند CD Player و یا DVD Palyer) با خواندن اطلاعات دیسک همان سیگنال ولتاژ x را تولید میکند. وظیفه سیستم صوتی از این به بعد انتقال x به بلندگو میباشد. برای انتقال این اختلاف پتانسیل میتوان از روشهای مختلفی استفاده نمود ، یکی انتقال با دو سطح ولتاژ که حالت معمول بوده و آنرا UnBalance مینامیم و دیگری انتقال با سه خط ولتاژ که آنرا Balance مینامیم. اگر سیستمی از مدار ورودی Input Buffer تا مدار خروجی Output Buffer سیگنال x را در حالت balance انتقال دهد میگوییم سیستم Fully Balance هست ولی اگر فقط بافر ورودی آن سیگنال را در حالت Balance دریافت کند و مدارات داخلی حتی یک بخش سیگنال را در حالت unbalance انتقال دهد سیستم را unbalance مینامیم. در حالت unbalance ما یک سطح ولتاژ Vb داریم و یک سطح ولتاژ Va که اختلاف آنها x(t)=Vb-Va را تشکیل میدهد.

n02.jpg

در شکل بالا ولتاژ هادی داخلی Vb بوده و سطح استوانه ای ولتاژی برابر Va دارد. مدارات در هر طبقه بر روی این دو سطح ولتاژ تاثیر گذارده و در خروجی با تغییراتی آنرا به طبقه بعدی تحویل میدهند. در مدارات Unbalance همین دو سطح ولتاژ انتقال می یابد و اکثر سیستمهای زیر 3000 دلار به این شکل سیگنال را منتقل مینمایند. این مدارات در حالت کلی نسبت به نویز از مدارات Balance حساس تر میباشند و هزینه طراحی آنها کمتر میباشد. سیستمهای بالانس به سیستمهایی میگویند که با سه خط ولتاژ سیگنال x را منتقل میکنند به این شکل که خط اول Pin 1 همان ولتاژ رفرنس Signal Ground میباشد . خط دوم Pin 2 که با استاندارد اروپا و امریکا hot یا non-inverting نامگذاری شده و سطح ولتاژ آن از سطح Pin 1 به اندازه x بالاتر است (استاندارد ژاپن برای Pin 2 و Pin 3 برعکس میباشد). خط سوم Pin 3 که Cold یا Inverting نامیده میشود و سطح ولتاژ آن از سطح ولتاژ  Pin 1 به مقدار x پایینتر است.

n03.jpg

اگر بخواهیم مثالی بیاوریم میتوانیم از تقویت کننده های تفاضلی differential نام ببریم. در تقویت کننده های تفاضلی اختلاف دو سطح Pin 2 و Pin 3 تقویت شده و نسبت به Common Mode Noise حساس نمیباشد. احتمالا عبارت Fully Differential را در Specification کامپوننت ها دیده اید که اشاره به همین مساله دارد.

Read More

آنالیز فوریه – بخش دوم

سه شنبه 12 سپتامبر 2006
/ / /

الان میتونیم یک سیستم خطی رو در حوزه فرکانس با کمک فوریه مدل کنیم. مساله اینجاست که یک کامپوننت مانند یک امپدانس ساده نیست و ما نمیتونیم فقط با یک تابع H سیستم رو مدل کنیم. ما میتونیم یک سیگنال ولتاژ به دو سر بلندگو بدیم و با اندازه گیری جریان پاسخ فرکانسی امپدانس بلندگو رو محاسبه کنیم و یا با تقسیم تابع خروجی ولتاژ بر تابع ورودی در حوزه فرکانس رفتار سیستم رو در انتقال ولتاژ در حالت بی باری (no Load) بررسی کنیم اما یک سیستم در الکترونیک بصورت یک دو قطبی مدل میشه و دوتا ورودی داره و دوتا خروجی بر خلاف یک امپدانس ساده که یک ورودی داره (ولتاژ) و یک خروجی (جریان). اگه سیستمی دو سیگنال ورودی داشته باشه و دو خروجی اونرو بصورت یک دو قطبی با کمک ماتریسها مدل میکنند. انتخاب برای سیگنال ورودی با ماست. مثلا میتونیم ولتاژ های دو ورودی رو سیگنال ورودی و شدت جریانهای در گردش هر ورودی رو سیگنال خروجی انتخاب کنیم تا ماتریس مشخصه سیستم رو بنویسیم. کتاب مدارهای الکتریکی دسور (انتشارات دانشکاه تهران) مرجع خوبی برای مطالعه دو قطبی هاست. با یک ماتریس 2 در 2 سیستم مدل میشه و این ماتریس چهار تابع در حوزه فرکانس دارد که همانطور که گفته شد هر تابع دو مشخصه دامنه و فاز دارد. بنابراین هر سیستم بشرط خطی بودن مانند DAC , Pre , Power , … دارای چهار تابع در حوزه فرکانس هست. هر یک از این توابع بخشی از خصوصیات سیستم رو به ما میدهند. در ضمن فراموش نشه برای تست خطی بودن یک دو قطبی باید از جبر ماتریسها استفاده کنیم به این شکل که دو سیگنال مورد تست هر کدام ، یک ماتریس هستند.

Read More

آنالیز فوریه – بخش اول

سه شنبه 12 سپتامبر 2006
/ / /

برای تحلیل یک سیستم باید رفتار آن سیستم را بفهمیم. برای اینکار روشهایی وجود دارد که از طریق آنها مشخص میشود خروجی سیستم به یک سیگنال ورودی دلخواه مانند X چیست. یعنی اگر تابع رفتار سیستم مشخص گردد اونوقت میتونیم بگیم خروجی سیستم به هر ورودی دلخواه چیست.
برای اینکار باید ابتدا معادله دیفرانسیل سیستم را بنویسیم و با استفاده از روشهای ریاضی آن معادله را حل نماییم. در ریاضیات برای حل بسیاری از معادلات از توابع متعامد استفاده میکنند. اما تعامد یعنی چی؟

ببینید همونطوری که ما یک بردار در فضای سه بعدی (هندسه اقلیدسی) را بر اساس مجموع سه بردار پایه در سه جهت x و y و z مینویسیم ، توابع رو هم میتونیم بر اساس چند تابع پایه بنویسیم.

مساله مهم اینجاست که اگر سه بردار پایه در جهت x و y و z بر هم عمود باشند و یا با توجه به تعریف تعامد یک فضای متعامد ۳ بعدی را تعریف کنند ما میتوانیم هر برداری در فضای سه بعدی را بر اساس این سه بردار بنویسیم. این کار را ریاضیدانان به فضای توابع تعمیم دادند و با تعریف تعامد توانستند توابعی بیابند که بر هم عمود باشند (با توجه به تعریف تعامد). در یک فضای متعامد میتوان توابع دلخواه را بر اساس مجموع توابع متعامد نوشت. نکته مهم اینست که فضای متعامد طوری تعریف و انتخاب شود که با معادله دیفرانسیل ما تناسب داشته باشد. یعنی اگر ما یک تابع دلخواه از مجموعه توابع متعامد را به سیستم اعمال کنیم در خروجی سیستم همان تابع را دریافت کنیم فقط با تغییر ضرایب. در اینحالت این سیستم هر تابع را در فضای متعامد تغییر شکل نمیدهد. اما چرا این مساله برای ما مهم هست؟

فرض کنید ما یک فضای متعامد داریم و سیگنال ورودی رو بر اساس اون توابع مینویسیم. در خروجی سیستم همان توابع رو داریم که ماهیتشون تغییر نکرده و فقط ضرایبشون عوض شده پس میتونیم بفهمیم این سیستم به ازای هر تابع متعامد چه تغییری در ضرایب ایجاد کرده و تابع سیستم رو بر اساس این تغییر ضرایب به ازای هر تابع مینویسیم.

برای سیستمهای خطی با معادلات مشتقات جزیی میتوان از توابع متعامد سینوسویدال استفاده نمود.

سیستمهای صوتی را در محدوده خطی بودنشان با معادلات مشتقات جزیی مدل میکنند و ما میتوانیم برای درک این سیستمها از توابع سینوسی و کسینوسی استفاده کنیم.

مجموع دو تابع سینوسی و کسینوسی با فرکانس مشخص و با ضرایب دلخواه را میتوان بر اساس یک تابع سینوسی با یک دامنه و یک فاز نوشت.

فرض کنید ما یک سیگنال سینوسی با فرکانس 1khz و دامنه یک ولت و فاز صفر درجه را به سیستم اعمال کنیم، در خروجی عین سیگنال سینوسی را خواهیم داشت با یک مقدار تضعیف یا تقویت در دامنه و مقداری تاخیر زمانی. برای هر فرکانس این تغییر دامنه و فاز یک مقدار مشخص هست و این تغییرات بر حسب فرکانس یعنی پاسخ دستگاه به توابع متعامد سینوسویدال.

خوب حالا برای تحلیل در حوزه فرکانس از آنالیز فوریه استفاده میکنیم.

آقای فوریه میگه هر تابع دلخواه (البته یه شرایطی هم داره که تو کتابها هست) رو میشه بر اساس مجموع بینهایت تابع سینوسی و کسینوسی با فرکانسهای مختلف نوشت. اندازه دامنه و فاز هر یک از این سینوسویدال ها در هر فرکانسی مقداری مشخص هست. تابعی که برای تابع x به ما دامنه و فاز رو در هر فرکانس میده X مینامیم.

x –> X(jw)

y –> Y(jw)

تابع y همان خروجی سیستم هست و طبق تعریف فوریه میشه تابع تبدیل سیستم رو نوشت :

H(jw)=Y(jw)/X(jw)

H همان تابع تبدیل سیستم هست که بر اساس هر فرکانس یک دامنه و یک فاز دارد و معنی آن اینست سیستم H در هر فرکانس چقدر بر روی دامنه و فاز سیگنال ورودی تاثیر میگذارد.

با دانستن تابع H ما میتوانیم رفتار سیستم را درک نماییم.

Read More

سیستمهای خطی

سه شنبه 12 سپتامبر 2006
/ / /

نمیدونم چقدر سیگنال سیستم خوندید اما کتاب اوپنهایم مرجع خوبی برای درک سیستمهای خطی در حوزه فرکانس هست. برای تحلیل یک سیستم ابتدا باید مفهوم خطی بودن رو شرح بدیم :
اگر دو سیگنال x1 و x2 رو جداگانه به سیستمی وارد کنیم و خروجی های اونرو y1 و y2 بنامیم در صورتی سیستم خطی فرض میشود که خروجی سیستم به x1 + x2 برابر y1 + y2 باشد. البته ما هیچ سیستم کاملا خطی برای هر اندازه تغییرات دامنه نداریم، بنابراین هر سیستمی حداکثر در یک ناحیه از تغییرات دامنه سیگنال x مورد ارزیابی قرار میگیرد.
سیستمهای صوتی را سیستمهایی خطی در ناحیه ای محدود تقریب میزنند و در مدلسازی آنها از مدل فرکانسی فوریه استفاده میکنند. دقت کنیم توابع x1 و x2 و y1 و y2 میتوانند ماتریسی از توابع در حوزه زمان باشند. برای بررسی خطی بودن دو قطبی ها در الکترونیک از ماتریس استفاده میشود.

Read More