Beyond bit-perfect:
The importance of the Player Software
And MAC OS X Playback Integer Mode

Damien PLISSON, Audirvana developer

Abstract
In computer audio, the player software replaces the CD drive as the transport feeding the DAC. Ensuring
bit-perfect output of the original audio signal is only a pre-requisite, while minimizing jitter and RF

interferences are still strongly needed.

This paper explains the main factors impacting sound quality on the computer side, and the means that
have been implemented in Audirvana player and the AMR DP-777 DAC to boost the audio experience to

the next level above the normal iTunes.

These main means are bit-perfect, sample rate switching, asynchronous transfer and Integer Mode.

Introduction: bit-perfect as the only goal or
the myth of the flat-square world

In the world of digital audio, the caveats of the
CD player are well known, namely the read
errors and the jitter induced by its mechanical
transport.

It is widely thought that computer sources are
immune to these issues, given that they are
faithful to the original signal, that is are bit-
perfect.

But unfortunately the digital world inside a
computer is not a flat-square world composed of
perfectly timed zeros and ones. The audio signal
chain goes through different elements whose
each can alter the sound quality.

In this paper we’ll look in details at these, and
see what a “source direct” solution can be to
minimize the adverse effects, and achieve very
high sound quality, better than nearly all the CD
transports.

1. Sources of non-quality

Assuming the output is bit-perfect, the computer
as a source creates two main sources on non-
quality:

Software-induced jitter

Digital signal is in fact an analogue waveform
composed of two states separated by a voltage
threshold (1 if above, 0 if under).

As presented in [MeitnerGendron91], the
receiver detects the value change the moment
the analogue value crosses the threshold. In
addition, the shift from one state to another is
not instantaneous but more slope like.

So a slight change in the reference voltage of the
source will lead to a slight temporal shift in the
value change detection.

- High level
Rising Falling
edge edge
5 Threshold
/\ i\
i i
g—/\ 1 \—

" "
"

"
xy ~ Low level

@ @

Reference voltage shift (1) induced time shift in level detection (2)

Figure 1: Reference voltage induced jitter

So fluctuations in the source reference voltage
create jitter, as explained in details in
[HawksfordDunn96].

This is the same on the receiver side with
measurement threshold fluctuations from its
power supply and/or ground instability.
Moreover the computer can still cause this as the
grounds are linked most of the time through the
same signal cables.

Computer load means rapidly changing power
demands from the CPU and its peripherals, with
peak demands that are directly related to the
software behaviour.

Radio-Frequency & other interferences

In addition, computation, disk access,
activities mean complex current waveforms are
carried on electrical lines and thus generate
electromagnetic interferences. Apple computers
are now made of “unibody” aluminium cases
that are good protectors from inside RF
interferences. But this is not sufficient as the
cables connected to the computer act as
antennas.

And these current waveforms are also going
back through the computer PSU, polluting the
mains power supply.

2. The hidden audio filters of OS X

As a modern operating system OS X needs to
offer shared access to the devices including the
audio output to all running applications. But this
is done at the expense of pure sound quality:

Audio mixer

Fortunately when only one application is playing
audio, it doesn’t affect the signal and thus is at
least bit-perfect in this case.

Sample rate conversion

In this shared model the device sample rate is
not switched to match the original signal’s, but it
is this last one that is sample rate converted.

In addition a suboptimal algorithm is used to
minimize the CPU load of this real-time
operation.

Digital volume control

OS X offers through its mixer volume control
(e.g. the one offered in iTunes). But as it operates
on the digital signal, any volume value different
from 100% means loss of bit-perfect and
precision loss (e.g. a volume value of 25% means
2 bits precision loss).

3. The data transfer to the DAC

First way to connect to the DAC is to use the
build-in TOSLINK output of the Mac. But this one
should be dismissed for being too jittery for
serious use.

Strong improvement comes by using “computer
connection” to the DAC, being either USB or
FireWire.

FireWire has long been the interface of choice
for the pro-market as it is made by design to
guarantee continuous streaming of AV data on
large number of channels. Anyway its
complexity of wuse (installation of driver
required, hot plugging even strongly advised
against by some manufacturers because of its
potentially harmful issues, ...) and its unclear
future have made USB the widely used choice.
The first type of USB devices are called adaptive
(or synchronous), meaning the DAC clock is
slaved to the computer’s continuous stream of
data.

More recent and advanced USB devices use
asynchronous transfer mode where the DAC
controls the flow of audio data, buffers it, and
uses its own stable-low-jitter clock. Thus it is
immune to short interruptions of USB stream
(e.g. bus reset, other device burst transfer, ...),
and much less prone to computer jittery clock.

This combines the advantages of both worlds:
ease of use of USB (no drivers), and stability of
FireWire. This is a great step towards sound
quality, but it is not decoupling completely the
DAC from the computer, and the interferences,
software-induced jitter still apply, starting by
following the ground loops.

4. The player software impact
First of all the player should ensure bit-perfect
reproduction of the signal by:

* Adapting the DAC sample rate to each
track native to avoid any unwanted
sample rate conversion

* Taking exclusive access (“hog mode”) of
the device to prevent other opened
applications from interfering

Furthermore, as we have seen in section 1, the
computer load (and its variations) has an impact
on sound quality. Minimizing such current
demands and sources of interferences is key:

* Loading tracks before playback
(“memory play”) to reduce disk access
and its audible, power and RFI impacts?

* Minimizing synchronous CPU load taken
for the audio data streaming operations.
In addition to reduce jitter, this also
helps to reduce audible RF interferences
patterns, especially in low frequencies?

5. Further optimization at driver level:
Integer Mode

Audio playback in OSX is usually performed
through a high-level framework, the Audio Units
processing graph3 [AppleCoreAudio]. The first
optimization of an audiophile player is to bypass
these overhead facilities and address directly the
CoreAudio lowest layer: the Hardware
Abstraction Layer. (See figure 2).

1 Replacing the HDD by a SSD removes the
directly audible mechanical noise but not the
other issues as it still requests important current
waveforms to transit on lengthy wires. And the
0S overhead is still present.

2 0SX Audio low level subsystem typically
requests data in 512 frames chunks, that is at a
frequency of ~86Hz for a 44.1kHz sample rate.

3 Note that bit-perfect playback can still happen
if all effect filters (including software volume
control) are deactivated. Thus stock iTunes can
be bit-perfect.

Usual audio player Audiophile player

Audio realtime presesserssesses reny
Processing Graph 1 Offline file loading !

| & decoding |
Audio File P
Player

Audio
Converter

Output Minimal
Audio Unit buffer reader

\ User space

\ l Kernel space

‘ Audio Device Driver ‘

|

‘ DAC ‘

Figure 2: Usual OS X file player vs Audiophile
concept

Float mode

In normal mode, all data exchanges performed
across the user/kernel boundary are in PCM 32-
bit float format, easing the different audio
streams mixing process and associated soft
clipping. [AppleHAL_1]

Note that it is anyway still bit-perfect up to 24bit
definition*.

Integer mode
Addressing directly the HAL [AppleHAL_2] gives
the possibility to bypass the two main overhead
processes of the above standard mode:

* Mixing buffer

* Float to DAC native format conversion

Standard Float Mode Integer Mode
| Stream 1 | Stream 1 ivglir;giliegt’rieam
i (32bit float) | w1 (32bit float) | | Native DAC format |
Mix all incoming streams

‘ Mix buffer ‘

Convert to DAC
native format

‘ Sample buffer ‘

DAC

Figure 3: Float vs Integer Mode

In Integer Mode (see figure 3) the player
software supplies a stream already formatted in
the native DAC format, thus optimizing
synchronous CPU load at the driver level.

These operations performed inside the driver, in
the kernel space, in real-time are on the critical
path for sound quality as they are the most
synchronous, happening at the very immediate
moment of the data transfer to the DAC. So
optimizing it is of great benefit, and this is only

4 32bit float is composed of 1 sign bit, 8
exponent bits and 23 bits for the mantissa. Thus
giving 24 bits of significant precision.

applicable to compatible DACs that offer this
non-standard mode.

Conclusion

The computer is a great music server but also a
source of jitter and other RF interferences that
are detrimental the sound quality, even when
bit-perfect reproduction is ensured.

The player software needs to optimize and
streamline the audio path to minimize these
adverse effects essentially linked to the
processing load synchronous to the audio
streaming. Achieving “source direct” in addition
to “bit-perfect” is key.

This is what I've tried to get in the Audirvana
player by streamlining to the maximum the real-
time operations that are limited to simple data
streaming in Integer Mode, while all the other
processes (loading from disk, decoding,
converting to DAC native format) are done
offline in a preparation phase, before playback.
This is called full memory play.

Best results are achieved when feeding an
Integer Mode, asynchronous USB DAC like the
AMR DP-777 that can take advantage of all these
optimization features.

References

[HawksfordDunn96] Bits is Bits ? in Stereophile
03/1996

[MeitnerGendron91] Time Distortions Within
Digital Audio Equipment Due to Integrated Circuit
Logic Induced Modulation Products, Ed Meitner
and Robert Gendron, presented at the 91st AES
Convention, New York, October 1991, Preprint
3105

[AppleCoreAudio] CoreAudio Overview: What is
CoreAudio ? in Mac OS X Developer Library
[AppleHAL_1] Audio Device Driver Programming
Guide: A Walk Through the 1/0 Model in Mac OS X
Developer Library

[AppleHAL_2] AudioHardware.h documentation
in Mac OS X Developer Library

